quite as attractive as it may sound, because now the callee faces a symmetric prob-
lem, not knowing whether its parameters are aliased or not. In traditional, sequential
programs this is less of a concern, but if the procedure is reentrant, the callee faces
precisely the same predicaments.

At some point, therefore, we should consider whether any of this fuss is worthwhile.
Instead, callers who want the callee to perform a mutation could simply send a boxed
value to the callee. The box signals that the caller accepts—indeed, invites—the callee
to perform a mutation, and the caller can extract the value when it’s done. This does
obviate the ability to write a simple swapper, but that’s a small price to pay for genuine
software engineering concerns.

9 Recursion and Cycles: Procedures and Data

Recursion is the act of self-reference. When we speak of recursion in programming
languages, we may have one of (at least) two meanings in mind: recursion in data, and
recursion in control (i.e., of program behavior—that is to say, of functions).

9.1 Recursive and Cyclic Data

Recursion in data can refer to one of two things. It can mean referring to something of
the same kind, or referring to the same thing itself.

Recursion of the same kind leads to what we traditionally call recursive data. For
instance, a tree is a recursive data structure: each vertex can have multiple children,
each of which is itself a tree. But if we write a procedure to traverse the nodes of a tree,
we expect it to terminate without having to keep track of which nodes it has already
visited. They are finite data structures.

In contrast, a graph is often a cyclic datum: a node refers to another node, which
may refer back to the original one. (Or, for that matter, a node may refer directly to
itself.) When we traverse a graph, absent any explicit checks for what we have already
visited, we should expect a computation to diverge, i.e., not terminate. Instead, graph
algorithms need a memory of what they have visited to avoid repeating traversals.

Adding recursive data, such as lists and trees, to our language is quite straightfor-
ward. We mainly require two things:

1. The ability to create compound structures (such as nodes that have references to
children).

2. The ability to bottom-out the recursion (such as leaves).
Exercise

Add lists and binary trees as built-in datatypes to the programming lan-
guage.

Adding cyclic data is more subtle. Consider the simplest form of cyclic datum, a
cell referring back to itself:

62



Let’s try to define this in Racket. Here’s one attempt:

(let ([b bl)
b)

But this doesn’t work: b on the right-hand side of the 1et isn’t bound. It’s easy to see
if we desugar it:

((lambda (b)
b)
b)

and, for clarity, we can rename the b in the function:

((lambda (x)
x)
b)

Now it’s patently clear that b is unbound.

Absent some magical Racket construct we haven’t yet seen, it becomes clear that
we can’t create a cyclic datum in one shot. Instead, we need to first create a “place” for
the datum, then refer to that place within itself. The use of “then”—i.e., the introduction
of time—should suggest a mutation operation. Indeed, let’s try it with boxes.

Our plan is as follows. First, we want to create a box and bind it to some identifier,
say b. Now, we want to mutate the content of the box. What do we want it to contain?
A reference to itself. How does it obtain that reference? By using the name, b, that is
already bound to it. In this way, the mutation creates the cycle:

(let ([b (box ’dummy)])
(begin
(set-box! b b)
b))

Note that this program will not run in Typed PLAI as written. We’ll return to typing
such programs later [REF]. For now, run it in the untyped (#lang plai) language.

When the above program is Run, Racket prints this as: #0=#&#0#. This notation
is in fact precisely what we want. Recall that #& is how Racket prints boxes. The #0=
(and similarly for other numbers) is how Racket names pieces of cyclic data. Thus,
Racket is saying, “#0 is bound to a box whose content is #0#, i.e., whatever is bound
to #0, i.e., itself”.

Exercise

63

That construct
would be shared,
but virtually no
other language has
this notational
mechanism, so we
won’t dwell on it
here. In fact, what
we are studying is
the main idea
behind how shared
actually works.



Run the equivalent program through your interpreter for boxes and make
sure it produces a cyclic value. How do you check this?

The idea above generalizes to other datatypes. In this same way we can also pro-
duce cyclic lists, graphs, and so on. The central idea is this two-step process: first
name an vacant placeholder; then mutate the placeholder so its content is itself; to ob-
tain “itself”, use the name previously bound. Of course, we need not be limited to
“self-cycles”: we can also have mutually-cyclic data (where no one element is cyclic
but their combination is).

9.2 Recursive Functions

In a shift in terminology, a recursive function is not a reference to a same kind of

function but rather to the same function itself. It’s useful to first ensure we’ve first

extended our language with conditionals (even of the kind that only check for 0, as

described earlier: section 5), so we can write non-trivial programs that terminate.
Let’s now try to write a recursive factorial:

(let ([fact (lambda (n)
(ifO n
1
(¢ n (fact (- n DN
(fact 10))

But this doesn’t work at all! The inner fact gives an unbound identifier error, just as
in our cyclic datum example.

It is no surprise that we should encounter the same error, because it has the same
cause. Our traditional binding mechanism does not automatically make function defi-
nitions cyclic (indeed, in some early programming languages, they were not: misguid-
edly, recursion was considered a special feature). Instead, if we want recursion—i.e.,
for a function definition to cyclically refer to itself—we must implement it by hand.

The means to do so is now clear: the problem is the same one we diagnosed before,
so we can reuse the same solution. We again have to follow a three-step process: first
create a placeholder, then refer to the placeholder where we want the cyclic reference,
and finally mutate the placeholder before use. Thus:

(let ([fact (box ’dummy)])
(let ([fact-fun
(lambda (n)
(if (zero? n)
1
(* n ((unbox fact) (- n 1)))))1)
(begin
(set-box! fact fact-fun)
((unbox fact) 10))))

64

Because you
typically write
top-level
definitions, you
don’t encounter this
issue. At the
top-level, every
binding is implicitly
a variable or a box.
As aresult, the
pattern below is
more-or-less
automatically put in
place for you. This
is why, when you
want a recursive
local binding, you
must use letrec or
local, not let.



In fact, we don’t even need fact-fun: I’ve used that binding just for clarity. Observe
that because it isn’t recursive, and we have identifiers rather than variables, its use can
simply be substituted with its value:

(let ([fact (box ’dummy)])

(begin
(set-box! fact
(lambda (n)
(if (zero? n)
1

(¥ n ((unbox fact) (- n 1))))))
((unbox fact) 10)))

There is the small nuisance of having to repeatedly unbox fact. In a language with
variables, this would be even more seamless:

(let ([fact ’dummy])

(begin
(set! fact
(lambda (n)
(if (zero? n)
1

(x n (fact (- n 1))))))
(fact 10)))
9.3 Premature Observation

Our preceding discussion of this pattern shows a clear temporal sequencing: create,
update, use. We can capture it in a desugaring rule. Suppose we add the following new
syntax:

(rec name value body)
As an example of its use,

(rec fact
(lambda (n) (if (=n 0) 1 (* n (fact (- n 1)))))
(fact 10))

would evaluate to the factorial of 10. This new syntax would desugar to:
(let ([name (box ’dummy)])
(begin
(set-box! name value)

body))

Where we assume that all references to name in value and body have been rewritten
to (unbox name), or alternatively that we instead use variables:

65

Indeed, one use for
variables is that
they simplify the
desguaring of the
above pattern,
instead of requiring
every use of a
cyclically-bound
identifier to be
unboxed. On the
other hand, with a
little extra effort the
desugaring process
could take care of
doing the unboxing,
too.



(let ([name ’dummy])
(begin
(set! name value)
body))

This naturally inspires a question: what if we get these out of order? Most in-
terestingly, what if we try to use name before we’re done updating its true value into
place? Then we observe the state of the system right after creation, i.e., we can see the
placeholder in its raw form.

The simplest example that demonstrates this is as follows:

(letrec ([x x]1)
x)

or equivalently,

(local ([define x x])
x)

In most Racket variants, this leaks the initial value given to the placeholder—a value
that was never meant for public consumption. This is troubling because it is, after all, a
legitimate value, which means it can probably be used in at least some computations. If
a developer accesses and uses it inadvertently, however, they are effectively computing
with nonsense.

There are generally three solutions to this problem:

1. Make sure the value is sufficiently obscure so that it can never be used in a
meaningful context. This means values like 0 are especially bad, and indeed
most common datatypes should be shunned. Instead, the language might create
a new type of value just for use here. Passed to any other operation, this will
result in an error.

2. Explicitly check every use of an identifier for belonging to this special “pre-
mature” value. While this is technically feasible, it imposes an enormous per-
formance penalty on a program. Thus, it is usually only employed in teaching
languages.

3. Allow the recursion constructor to be used only in the case of binding functions,
and then make sure that the right-hand side of the binding is syntactically a func-
tion. Unfortunately, this solution can be a bit drastic because it precludes writing,
for instance, structures to create graphs.

9.4 Without Explicit State

As you may be aware, there is another way to define recursive functions (and hence
recursive data) that does not leverage explicit mutation operations.
Do Now!

66



